Existence of standing waves for dirac fields with singular nonlinearities
نویسندگان
چکیده
منابع مشابه
Existence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملStanding waves for nonlinear Schrödinger equations with singular potentials
We study semiclassical states of nonlinear Schrödinger equations with anisotropic type potentials which may exhibit a combination of vanishing and singularity while allowing decays and unboundedness at infinity. We give existence of spike type standing waves concentrating at the singularities of the potentials. © 2008 Elsevier Masson SAS. All rights reserved. Résumé Nous étudions les états semi...
متن کاملexistence of a positive solution for a p-laplacian equation with singular nonlinearities
in this paper, we study a class of boundary value problem involving the p-laplacian oprator and singular nonlinearities. we analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ we find lower bounds of critical parameter $lambda^{ast}$. we use the method ...
متن کاملStable directions for small nonlinear Dirac standing waves
Abstract: We prove that for a Dirac operator, with no resonance at thresholds nor eigenvalue at thresholds, the propagator satisfies propagation and dispersive estimates. When this linear operator has only two simple eigenvalues sufficiently close to each other, we study an associated class of nonlinear Dirac equations which have stationary solutions. As an application of our decay estimates, w...
متن کاملExistence and Concentration of Semiclassical Solutions for Dirac Equations with Critical Nonlinearities
We study the semi-classical ground states of the Dirac equation with critical nonlinearity: −i~α · ∇w + aβw + V (x)w = W (x) ( g(|w|) + |w| ) w for x ∈ R3. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. We develop an argument to establish the existence of least energy solutions for ~ small. We also describe the concentration pheno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1990
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf02096554